Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application

EULYNX Shubhangi Salunkhe Abdul Rasheeq Georg Holtmann

Introduction

NETZE

In EULYNX V & V[1] approach to prove the safety-critical requirements, formal methods are used. Where, the semi-formal model was transformed to **UML-B**[3] model manually. Later, UML-B model transformed to **Event-B**[4](Formal Model) model. The process is shown in below Figure 1.

Modelling / Verification

UML-B Model

Tool Chain

The proposed methodology and toolchain

Semantic Mapping and Rules

- For the transformation process, it is important to understand the **semantics** of both languages and map those semantics to generate the target model.
- this approach, we identified "seven" In constructs that are semantically similar between SysML and Event-B for the case study below.

SvsMI Concent	Event-B Concent

Figure 1. EULYNX V & V approach using Manual Transformation

- EULYNX V & V approach of formally verifying the **SysML**[2] model by manually transforming to a formal model has a few challenges and disadvantages.
- The process of manual transformation is time consuming. If the state-machine (system behaviour) is complex, then creating UML-B model takes time and the created model can be erroneous.
- Implementation of transformation rules on metamodels to perform the model-to-model transformation.
- Automating the transformation process will significantly improve the V & V process by

enables the automatic transformation of SysML specification models into formal models (Event-B) and the generated Event-B Models can be verified.

- It maintains traceability between informal requirements and the modeled system, specifically for the safety properties.
- It reduces the efforts needed for the manual transformation of a SysML semi-formal model to a formal model.
- It supports a modular railway signalling architecture with standardized interfaces.

· · ·	• • • • • • • • • • • • • • • • • • •
State Machine	Machine(Project)
States	Variables
Guards	Guards
Transitions	Events
Effects	Actions
States	Default Invariants
Ports	Variables

Table 1. List of Semantic Mapping

Figure 5 illustrates one of the rules we developed for the transformation.

Case Study

Case study considers **Point Machine** behaviour

- speeding up of creation of formal model as well as without errors.
- In this poster, we propose a case study of automatically transforming the Semi-formal model i.e., SysML model to formal model Event-**B** model to support formal verification of EULYNX functional system requirements.

Automatic Translation Process

The Figure 2. represents the automatic translation process, where the intermediate representation i.e., the UML-B model is removed from the process.

Figure 4. Schematic Block Diagram of Transformation Methodology

- methodology The behind automatic transformation is visualized in Figure 4.
- The input for our Transformation engine is XMI formatted SysML model pre-processed in Step
- Then the pre-processed model is transformed to target Event-B model in **Step 2**.
- Finally, the transformed formal model is imported in Event-B for verification in **Step 3**.
- methodology uses model-to-model Our transformation techniques, which uses Rule based transformation approach.
- The tool eMOFLON:IbeX [7] supports model-tomodel transformation using Triple Graph Grammar(TGG) [7] Rules, the rules are bidirectional [7] in nature.
- TGG is a well-known approach to consistency management with the unique advantage of being declarative enough to address multiple consistency management operations with the same specification.

with only one state machine. The state machine in XMI format is provided as an input to generate **Event-B** model. Figure 6 illustrates the case study.

Figure 6. Case Study (Point Machine Behavior)

After the application of "transformation rules" using transformation engine, we successfully generated the Event-B model illustrated in Figure 7. below.

MACUTNE	
nechine	
Bach Inc	next position
VARIABLES	eratic
RIGHT	514105
LEFT	ordinary
right	WHEN
Left	isin_RIGHT : RIGHT = TRUE
move_point_left	position_guards1 : move_point_left = TRUE
move_point_right	THEN
INVARIANTS	leave_RIGHT : RIGHT = FALSE
typeof_RIGHT : RIGHT & BOOL	position actions1 : left = TRUE
typeof_LEFT : LEFT < BOOL	position actions4 : right = FALSE
distinct_states_in_position : partition({TRUE}, {RIGHT} o {TRUE}, {LEFT} o {TRUE})	enter LEET : LEET = TRUE
inv3 : (left = TRUE) v (left = FALSE)	
inv4 : right # BOOL	cho
inv5 : left # BOOL	durant multiment
inv6 : move_point_right = BOOL	current_position =
inv7 : (right = TRUE) v (right = FALSE)	STATUS
<pre>inv8 : (move_point_left = TRUE) v (move_point_left = FALSE)</pre>	ordinary
<pre>inv9 : (move_point_right = TRUE) v (move_point_right = FALSE)</pre>	MHEN
Invio : move_point_tert = BOOL	isin_LEFT : LEFT = TRUE
EVENTS	position_guards2 : move_point_right = TRUE
INITIALISATION A	THEN
STATUS	leave LEFT : LEFT = FALSE
ordinary	position actions2 : right = TRUE
BEGIN	position actions3 : left = FALSE
init_RIGHT : RIGHT - TRUE	enter DTCUT : DTCUT = TDUE
init_LEFT : LEFT = FALSE	
act1 : move_point_left = TRUE	End
act2 : right = FALSE	
act3 : Left = FALSE	END
act4 : move_point_right = TRUE	
END	

This approach will transform the SysML model directly to the Event-B as the target Model.

"When applying Model-Driven Engineering(MDE), metamodels with similar objectives are then inescapably created. A recurrent issue is thus to turn compatible models conforming to similar metamodels, for example to use them in the same tool." [8]

Contact

neovendi GmbH projects | engineering | digital transformation

Website:	www.neovendi.co
Tel:	+49 2824 99891 75
Mail:	info@neovendi.cor

DRSS **Digital Rail** Summer School

References

- EULYNX . https://eulynx.eu/
- SysML . https://sysml.org/
- Colin Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014, pages 2930, Toulouse, France, 2014. http://eprints.soton.ac.uk/365301/
- 4. Event-B. http://www.event-b.org/
- Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and reasoning in Event-B. Software Tools for Technology Transfer, 12(6):447466, November 2010.
- 6. Salunkhe, Shubhangi, Randolf Berglehner, and Abdul Rasheeq. "Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application." International Conference on Rigorous State-Based Methods. Springer, Cham, 2021.
- 7. Nils Weidmann, Anthony Anjorin, Lars Fritsche, Gergely Varró, Andy Schürr, and Erhan Leblebici. Incremental bidirectional model transformation with emoflon::Ibex. in 2019 (ceur workshop proceedings), james cheney and hsiang-shang ko (eds.), vol. 2355. ceur-ws. org, 45–55, 2019.
- 8. Falleri, JR., Huchard, M., Lafourcade, M., Nebut, C. (2008). Metamodel Matching for Automatic Model Transformation Generation . In: Czarnecki, K., Ober, I., Bruel, JM., Uhl, A., Völter, M. (eds) Model Driven Engineering Languages and Systems. MODELS 2008. Lecture Notes in Computer Science, vol 5301. Springer, Berlin, Heidelberg.